Multi And Biracial SUNSHINE PEOPLE
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Biracial And Multiracial People Arts Business History News And More.


You are not connected. Please login or register

To live up to the hype, quantum computers must repair their error problems

Go down  Message [Page 1 of 1]

Admin

Admin
Admin

Astronaut John Glenn was wary about trusting a computer.

It was 1962, early in the computer age, and a room-sized machine had calculated the flight path for his upcoming orbit of Earth — the first for an American. But Glenn wasn’t willing to entrust his life to a newfangled machine that might make a mistake.

The astronaut requested that mathematician Katherine Johnson double-check the computer’s numbers, as recounted in the book Hidden Figures. “If she says they’re good,” Glenn reportedly said, “then I’m ready to go.” Johnson determined that the computer, an IBM 7090, was correct, and Glenn’s voyage became a celebrated milestone of spaceflight (SN: 3/3/62, p. 131).

Fragile qubits
Conventional computers — which physicists call classical computers to distinguish them from the quantum variety — are resistant to errors. In a classical hard drive, for example, the data are stored in bits, 0s or 1s that are represented by magnetized regions consisting of many atoms. That large group of atoms offers a built-in redundancy that makes classical bits resilient. Jostling one of the bit’s atoms won’t change the overall magnetization of the bit and its corresponding value of 0 or 1.

But quantum bits — or qubits — are inherently fragile. They are made from sensitive substances such as individual atoms, electrons trapped within tiny chunks of silicon called quantum dots, or small bits of superconducting material, which conducts electricity without resistance. Errors can creep in as qubits interact with their environment, potentially including electromagnetic fields, heat or stray atoms or molecules. If a single atom that represents a qubit gets jostled, the information the qubit was storing is lost.

Additionally, each step of a calculation has a significant chance of introducing error. As a result, for complex calculations, “the output will be garbage,” says quantum physicist Barbara Terhal of the research center QuTech in Delft, Netherlands.

Before quantum computers can reach their much-hyped potential, scientists will need to master new tactics for fixing errors, an area of research called quantum error correction. The idea behind many of these schemes is to combine multiple error-prone qubits to form one more reliable qubit. The technique battles what seems to be a natural tendency of the universe — quantum things eventually lose their quantumness through interactions with their surroundings, a relentless process known as decoherence.

“It’s like fighting erosion,” says Ken Brown, a quantum engineer at Duke University. But quantum error correction provides a way to control the seemingly uncontrollable.

https://multibiracial.forumotion.com

Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum