Physicist Stephan Reuter of Polytechnique Montréal spends most days using his expertise in energy and matter to improve medical technologies. Recently though, he stood in a sea of green to consider how a shower of charged particles might affect lettuce.
He had been invited to one of the largest commercial greenhouses in Quebec to help the growers rethink the energy of agriculture. Inside the building, encased by glass walls and covering more ground than four soccer fields, thousands upon thousands of lettuce plants floated on polystyrene mats in a hydroponic, or no-soil, growing system. The crop was nearly ready to be picked, packaged and shipped. Reuter’s task was to use physics to help the company, Hydroserre Inc. in Mirabel, reduce its carbon footprint.
To that end, the company is interested in finding new ways to fight pathogens and to deliver fertilizer to the growing plants. Many fertilizers contain ammonia, which is produced from nitrogen (necessary for plant growth) and hydrogen using a chemical reaction called the Haber-Bosch process. This process revolutionized agriculture in the early 20th century by making mass production of fertilizer possible. However, the process yields hundreds of millions of metric tons of carbon dioxide each year.
He had been invited to one of the largest commercial greenhouses in Quebec to help the growers rethink the energy of agriculture. Inside the building, encased by glass walls and covering more ground than four soccer fields, thousands upon thousands of lettuce plants floated on polystyrene mats in a hydroponic, or no-soil, growing system. The crop was nearly ready to be picked, packaged and shipped. Reuter’s task was to use physics to help the company, Hydroserre Inc. in Mirabel, reduce its carbon footprint.
To that end, the company is interested in finding new ways to fight pathogens and to deliver fertilizer to the growing plants. Many fertilizers contain ammonia, which is produced from nitrogen (necessary for plant growth) and hydrogen using a chemical reaction called the Haber-Bosch process. This process revolutionized agriculture in the early 20th century by making mass production of fertilizer possible. However, the process yields hundreds of millions of metric tons of carbon dioxide each year.