“Organisms from anywhere on the tree of life can make wiggly, little [branching and rejoining] structures,” says Jonathan Antcliffe, a paleobiologist at the University of Lausanne in Switzerland. The fossils lack features such as mineralized skeletal parts called spicules that would identify the creatures as sponges, he says.
What’s more, the finding “doesn’t fit with everything we know about the whole [ocean] ecosystem” in regards to nutrient, biomineral and oxygen availability before the Cambrian Period, Antcliffe says. “Everything we know about the Earth’s oceans in this interval of time tells us that animals originated around 540 [to] 550 million years ago. It’s a legion of evidence, and to overturn such an enormously strong paradigm, you need more than ‘might be a sponge.’”
Turner first found the network of tubes in 1992 in rocks from the ancient Little Dal cyanobacteria reef in Canada’s Mackenzie Mountains. “I found this thing that was totally out of place,” she says. “It was much more complex in terms of its structure than anything that could be made by cyanobacteria.”
What’s more, the finding “doesn’t fit with everything we know about the whole [ocean] ecosystem” in regards to nutrient, biomineral and oxygen availability before the Cambrian Period, Antcliffe says. “Everything we know about the Earth’s oceans in this interval of time tells us that animals originated around 540 [to] 550 million years ago. It’s a legion of evidence, and to overturn such an enormously strong paradigm, you need more than ‘might be a sponge.’”
Turner first found the network of tubes in 1992 in rocks from the ancient Little Dal cyanobacteria reef in Canada’s Mackenzie Mountains. “I found this thing that was totally out of place,” she says. “It was much more complex in terms of its structure than anything that could be made by cyanobacteria.”