Some big scientific discoveries aren’t actually discovered. They are borrowed. That’s what happened when scientists enlisted proteins from an unlikely lender: green algae.
Cells of the algal species Chlamydomonas reinhardtii are decorated with proteins that can sense light. That ability, first noticed in 2002, quickly caught the attention of brain scientists. A light-sensing protein promised the power to control neurons — the brain’s nerve cells — by providing a way to turn them on and off, in exactly the right place and time.
Nerve cells genetically engineered to produce the algal proteins become light-controlled puppets. A flash of light could induce a quiet neuron to fire off signals or force an active neuron to fall silent.
“This molecule is the light sensor that we needed,” says vision neuroscientist Zhuo-Hua Pan, who had been searching for a way to control vision cells in mice’s retinas.
Cells of the algal species Chlamydomonas reinhardtii are decorated with proteins that can sense light. That ability, first noticed in 2002, quickly caught the attention of brain scientists. A light-sensing protein promised the power to control neurons — the brain’s nerve cells — by providing a way to turn them on and off, in exactly the right place and time.
Nerve cells genetically engineered to produce the algal proteins become light-controlled puppets. A flash of light could induce a quiet neuron to fire off signals or force an active neuron to fall silent.
“This molecule is the light sensor that we needed,” says vision neuroscientist Zhuo-Hua Pan, who had been searching for a way to control vision cells in mice’s retinas.