Deep-sea species lack genes involved in the body’s response against pathogens or foreign tissue
How males and females fuse and avoid being rejected by each other’s immune systems — like a mismatched organ transplant — has been a mystery. Now, a study finds that anglerfish might not have to evade the immune system in the first place.In vertebrates, immune protection typically involves a bodily response called adaptive immunity that identifies and eliminates foreign threats like viruses. Immune cells, such as T cells, recognize fragments of invaders and present those pieces to other cells that then mount an attack. In another line of defense, proteins called antibodies bind to trespassers to mark them for removal by the immune system. In organ transplants, such responses can cause the new organ to fail.
The deep-sea anglerfishes’ missing genes are involved in making those systems work.
“When you look at [these fish], you scratch your head and think, ‘How is that possible?’” says Thomas Boehm, an immunologist at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg, Germany. In humans, it’s often difficult to find the right match for organ transplants because of the adaptive immune system, “but these creatures seem to be doing it without knowing what’s going on.”