Wildfire smoke and urban air pollution bring out the worst in each other.
As wildfires rage, they transform their burned fuel into a complex chemical cocktail of smoke. Many of these airborne compounds, including ozone, cause air quality to plummet as wind carries the smoldering haze over cities. But exactly how — and to what extent — wildfire emissions contribute to ozone levels downwind of the fires has been a matter of debate for years, says Joel Thornton, an atmospheric scientist at the University of Washington in Seattle.
Many ingredients for making ozone — such as volatile organic compounds and nitrogen oxides — can be found in wildfire smoke, says Lu Xu, an atmospheric chemist currently at the National Oceanographic and Atmospheric Administration Chemical Sciences Laboratory in Boulder, Colo. But a list of ingredients isn’t enough to replicate a wildfire’s ozone recipe. So Xu and colleagues took to the sky to observe the chemistry in action.
As wildfires rage, they transform their burned fuel into a complex chemical cocktail of smoke. Many of these airborne compounds, including ozone, cause air quality to plummet as wind carries the smoldering haze over cities. But exactly how — and to what extent — wildfire emissions contribute to ozone levels downwind of the fires has been a matter of debate for years, says Joel Thornton, an atmospheric scientist at the University of Washington in Seattle.
Many ingredients for making ozone — such as volatile organic compounds and nitrogen oxides — can be found in wildfire smoke, says Lu Xu, an atmospheric chemist currently at the National Oceanographic and Atmospheric Administration Chemical Sciences Laboratory in Boulder, Colo. But a list of ingredients isn’t enough to replicate a wildfire’s ozone recipe. So Xu and colleagues took to the sky to observe the chemistry in action.